
Autodep: Low-Overhead Distributed 
Model Deployment
Matt Nappo



Model Deployment

● Once a model has been trained/tested/calibrated/etc…

○ How do we provide reliable access to the model? 

○ How do we effectively integrate the model into a larger software system?



The Problem

● Deploying a model is a very tedious and complicated task

● Naive/simple solutions have many drawbacks

○ Cost, maintenance, bad scalability



Autodep

● A tool that automatically deploys PyTorch models in a scalable way

● Simply specify a TorchScript file, and Autodep automatically spins up an 

HTTP server providing inference

● Supports:

○ Image Classification models

○ Image-to-Image (seq-to-seq) models

● Entirely written in Rust



System Architecture

HTTP Server

Users

POST
/inference

GET
/status

Worker Manager

Start new 
worker

Send inference 
request

Terminate old 
worker

Worker
Torch engine

HTTP reqs
RPC

RPC

RPC Worker
Torch engine



Features

● Automatic setup – just supply the TorchScript file

● Distributed – runs inferences across a cluster of nodes

○ Communicates over gRPC over HTTP/2

● Dynamic scaling – will spin up new workers to meet request demand

● Fast, memory-safe, asynchronous – written in Rust, powered by Tokio



Testing

● Image Classification

○ ResNet18

○ ResNet50

● Image segmentation:

○ DeepLab v3

● Measured average latency and benchmarked request throughput



Live Demo
● Image segmentation demo

● Autoscaling demo



Thanks!
Code

github.com/mattnappo/autodep


