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Model Deployment

e Once a model has been trained/tested/calibrated/etc...
o How do we provide reliable access to the model?

o How do we effectively integrate the model into a larger software system?



The Problem

e Deploying a model is a very tedious and complicated task
e Naive/simple solutions have many drawbacks

o Cost, maintenance, bad scalability



Autodep

e Atool that automatically deploys PyTorch models in a scalable way
e Simply specify a TorchScript file, and Autodep automatically spins up an
HTTP server providing inference
e Supports:
o Image Classification models
o Image-to-Image (seg-to-seq) models

e Entirely written in Rust
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Features

e Automatic setup — just supply the TorchScript file
e Distributed — runs inferences across a cluster of nodes
o Communicates over gRPC over HTTP/2
e Dynamic scaling — will spin up new workers to meet request demand

e Fast, memory-safe, asynchronous — written in Rust, powered by Tokio
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e Image Classification S —
o ResNet18

o ResNet50 i .

e Image segmentation:

o DeeplLab v3 ° ’

e Measured average latency and benchmarked request throughput



e Image segmentation demo

Live Demo

e Autoscaling demo



Code
Thanks!

github.com/mattnappo/autodep




