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Model Deployment

● Once a model has been trained/tested/calibrated/etc…

○ How do we provide reliable access to the model? 

○ How do we effectively integrate the model into a larger software system?



The Problem

● Deploying a model is a very tedious and complicated task

● Naive/simple solutions have many drawbacks

○ Cost, maintenance, bad scalability



Autodep

● A tool that automatically deploys PyTorch models in a scalable way

● Simply specify a TorchScript file, and Autodep automatically spins up an 

HTTP server providing inference

● Supports:

○ Image Classification models

○ Image-to-Image (seq-to-seq) models

● Entirely written in Rust
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Features

● Automatic setup – just supply the TorchScript file

● Distributed – runs inferences across a cluster of nodes

○ Communicates over gRPC over HTTP/2

● Dynamic scaling – will spin up new workers to meet request demand

● Fast, memory-safe, asynchronous – written in Rust, powered by Tokio



Testing

● Image Classification

○ ResNet18

○ ResNet50

● Image segmentation:

○ DeepLab v3

● Measured average latency and benchmarked request throughput



Live Demo
● Image segmentation demo

● Autoscaling demo



Thanks!
Code

github.com/mattnappo/autodep


