Autodep: Low-Overhead Distributed
Model Deployment

Matt Nappo




Model Deployment

e Once a model has been trained/tested/calibrated/etc...
o How do we provide reliable access to the model?

o How do we effectively integrate the model into a larger software system?



The Problem

e Deploying a model is a very tedious and complicated task
e Naive/simple solutions have many drawbacks

o Cost, maintenance, bad scalability



Autodep

e Atool that automatically deploys PyTorch models in a scalable way
e Simply specify a TorchScript file, and Autodep automatically spins up an
HTTP server providing inference
e Supports:
o Image Classification models
o Image-to-Image (seg-to-seq) models

e Entirely written in Rust



System Architecture

HTTP regs

—
—

~

HTTP Server

POST
/inference

GET
/status

~

RPC

Worker Manager

Start new
worker

Send inference
request

Terminate old
worker

RPC

Worker
Torch engine

Worker
Torch engine




Features

e Automatic setup — just supply the TorchScript file
e Distributed — runs inferences across a cluster of nodes
o Communicates over gRPC over HTTP/2
e Dynamic scaling — will spin up new workers to meet request demand

e Fast, memory-safe, asynchronous — written in Rust, powered by Tokio



s). jitter: false, uniform: true, no error
ms, p99.9 382.98 ms, max 383.693 ms

e Image Classification S —
o ResNet18

o ResNet50 i .

e Image segmentation:

o DeeplLab v3 ° ’

e Measured average latency and benchmarked request throughput



e Image segmentation demo

Live Demo

e Autoscaling demo



Code
Thanks!

github.com/mattnappo/autodep




